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The Ising model is enormously useful in statistical mechanics, both as a model system for concepts
such as the lattice renormalization group method and lattice duality, and as a tool for describing
physical phenomena such as ferromagnetism. Its simplicity and built-in symmetries allow for exact
calculations of quantities such as the critical temperature and critical exponents. Additionally, nu-
merical methods such as the Metropolis-Hastings algorithm complement exact solutions and allow
for insight in cases which cannot be exactly solved. This paper describes an implementation of
the Metropolis-Hastings algorithm for several geometries with exact solutions, as well as an imple-
mentation on a random lattice. The critical behavior of each system is examined and compared to

theoretical predictions.

I. INTRODUCTION

The Ising model is one of the most commonly used tools
in statistical mechanics for modeling simple interact-
ing many-particle systems. It consists of a set of spins
o; = *1 on a lattice. The spins interact with both their
nearest neighbors and an external magnetic field via a
Hamiltonian of the form

N
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where the notation (7,j) indicates a sum over nearest
neighbor lattice points, K > 0 is a parameter describ-
ing inter-particle interactions, and h is a nondimension-
alized external magnetic field.[1] We see that is energet-
ically favorable both for spins to locally align with one
another, as well as for spins to align with an external
magnetic field. The parameters K and h are generally re-
garded as being inversely proportional to temperature—
K = IA(/k;BT, h = ﬁ/kBT—but as they are purely phe-
nomenological parameters, they do not necessarily have
this form.

The Ising model is best known for describing the emer-
gence of ferromagnetism in crystals of atoms that inter-
act via spin-spin coupling. However, many other systems
that experience second-order phase transitions, such as
water near its critical point, exhibit the same critical be-
havior as the Ising model. This phenomenon of universal-
ity further increases the utility of the Ising model. Ising,
who was first introduced to the model by his thesis su-
pervisor, W. Lenz, in 1920, solved the model exactly in
the one-dimensional case. However, the one-dimensional
case does not exhibit a phase transition, so the general
model was initially assumed to be ineffective at describ-
ing systems with critical points. Bragg and Williams
tried to approach the model with a mean-field theory,
but their approach predicts a phase transition in any

*Electronic address: seltinge®@mit.edu

number of dimensions, which is at odds with the exact
one-dimensional result.[2]

In 1944, Onsager exactly solved the Ising model for a
two-dimensional square lattice. He demonstrated that,
for an infinite lattice, the ferromagnetic phase transition
occurs at critical temperature of
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where kp is Boltzmann’s constant. Onsager’s derivation,
which is long and involved, takes advantage of a sym-
metry in the model to develop an infinite-dimensional
Lie algebra that makes the solution simpler.[3][4] One
writer, in order to illustrate the complexity of Onsager’s
approach, notes that the famously laconic Landau and
Lifshitz take eight pages to recreate the solution.[5] Since
the publication of Onsager’s solution, many physicists
have employed simpler or more direct techniques to re-
produce his solution in a more accessible way;[6] other
writers have used intuitive or physical reasoning to ar-
rive at the same answer with minimal computation.[5]

The Ising model is useful even in cases for which it
cannot be solved exactly. For example, it has been used
on random graphs to study the spread of diseases in com-
plex networks.[7] Other variants that have been studied
include models introducing time dependent statistics[8]
and Monte Carlo algorithms on randomized nonlinear o
models.[9]

On both geometries where the Ising model can be ex-
actly solve and those where it cannot, numerical simula-
tions can also provide insight into critical behavior. The
most common model for simulating Ising systems is the
Metropolis-Hastings algorithm, originally developed for
use in molecular dynamics simulations.[10] In this pa-
per, we describe an implementation of the Metropolis-
Hastings algorithm in Mathematica on four lattices: a
square lattice, a triangular lattice, a hexagonal lattice,
and a randomized lattice constructed via a Delaunay tri-
angulation. We investigate the critical behavior of the
systems and find generally good agreement with theoret-
ical predictions.
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FIG. 1: The square, triangular, and hexagonal lattices.

II. DESCRIPTION OF THE LATTICES

In this section, we present the lattices to be studied and
review some theoretical predictions about each lattice.

A. Exactly solvable lattices

The square, triangular, and hexagonal lattices, shown in
Figure 1, all have exactly computable critical tempera-
tures. The most straightforward way to find these criti-
cal temperatures is via duality. The partition function for
the square lattice admits both high- and low-temperature
series expansions. One can identify a one-to-one corre-
spondence between terms in the two expansions, with
corresponding values of the coupling constant related by
the duality relation

¢~2K — tanh K,

where K is the low-temperature parameter and K is the
high-temperature parameter. The square Ising model
is therefore referred to as self-dual—high-temperature
configurations of the system can be mapped onto low-
temperature configurations, and vice versa. The parti-
tion function is expected to be analytic everywhere ex-
cept at a unique phase transition, which must therefore
occur when K = K = K.—otherwise, the duality would
give another divergent point for the partition function.
Solving for K. yields

In(1+v/2)

o_

KD = SR (3)
2 K X

O

-~ x2269K/kg, 4

© In(1++v2)ks ks )

as promised in the introduction.

The triangular lattice is not self-dual, but it is the dual
of the hexagonal lattice—and vice versa. The critical
temperatures for both systems can therefore be found by
composing the two dualities in both orders, yielding

4 K X
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FIG. 2: An example of a Delaunay triangulation (solid lines).
The dual figure, in dashed lines, is known as a Voronoi dia-
gram. (Kristof Van Laehoven, http://www.comp.lancs.ac.
uk/~kristof)

The above results are for lattices of infinite size. Our
computations will be on finite-size lattices with periodic
boundary conditions, which accurately recreate infinite-
size results in many respects.

B. Randomized 2D lattice

To generate the random lattice, we select 400 points from
a random distribution on the unit square. We then per-
form a Delaunay triangulation on the points in order to
generate a plausible set of nearest neighbors. The De-
launay triangulation finds a set of triangles covering the
lattice such that the circumcircle through the vertices of
each triangle encloses no other points in the lattice.[11]
Figure 2 shows an example of a Delaunay triangulation.
However, we would prefer for the lattice to have peri-
odic boundary conditions, and by default the Delaunay
triangulation cannot wrap around the edges. In order
to rectify this, we construct a second lattice by shifting
each point (z,y) to (z + 0.5,y + 0.5) mod 1, essentially
swapping the roles of the center and the corners of the
lattice. We then construct a second Delaunay triangula-
tion on this other lattice—this one connects the points
lying on the edges of the first diagram, while leaving gaps
in the center. Since the Delaunay triangulation is a local
construction, points not near the edges or the center of
the grid had the same connections in both triangulations.
Taking the union of the two triangulations, then, yields
a periodic triangulation. This construction is analogous
to the idea of stitching together multiple charts to create
a continuous atlas on a manifold in differential geometry.

Table I compares the number of nearest neighbors in
the various regular lattices the average number of nearest
neighbors in the Delaunay triangulation. The Delaunay
connectivity is closer to that on the triangular lattice
than the square or hexagonal lattices. As a first esti-
mate, then, we expect to observe behavior on the 2D
lattice that more closely recreates the triangular-lattice
behavior than any of the other systems. Dorogovtsev,
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Lattice (Avg.) Connectivity
Hexagonal lattice 3
Square lattice 4
Triangular lattice 6
Random 2D lattice 6.64

TABLE I: Exact number of nearest neighbors on the hexag-
onal, square and triangular lattice; and average number of
Delaunay-triangulated nearest neighbors on the random lat-
tice.

Goltsev, and Mendes give a formula for the critical tem-
perature on random networks with a power-law connec-
tivity distribution that predicts a critical temperature of
T, = 6.15 K /kp for our system. However, the connec-
tivity on our lattice does not follow a power law, so this
prediction may not turn out to be accurate.

III. METROPOLIS-HASTINGS ALGORITHM

The Metroplis-Hastings algorithm is a common algorithm
for performing Monte Carlo computations on statistical
mechanical ensembles. We have implemented the algo-
rithm in Mathematica, extending earlier work by Gaylord
and Nishidate.[12] The goal of the Metropolis-Hastings
algorithm is to explore the state space of a system ergod-
ically, and hence not only locate thermally stable con-
figurations but also generate an ensemble of states from
which thermodynamic variables can be computed. There
are three steps to the algorithm:

1. Generate an initial configuration with spins ran-
domly selected to be up or down. In each model,
we used 400 points with periodic boundary condi-
tions, a scale at which real phase transitions could
be observed but whose computations could still be
feasibly performed on a laptop computer.

2. Select a random spin and compute the change in
the system’s total energy AFE that would arise due
to flipping it.

(a) If AE < 0, flip the spin with probability 1.

(b) If AE > 0, flip the spin with probability
e~ AE/kBT where T is the temperature of the
system.

This approach is intended to mimic the physical
result that an excitation of energy ¢ in a canon-
ical ensemble will occur with relative probability
e~</k8T  This step is repeated until the system
thermalizes—i.e., the mean magnetization relaxes
to its equilibrium value.

3. Repeat the spin-flip procedure many times and col-
lect statistical data from the resulting ensemble of
microstates. For a lattice with 400 points, we did
this on the order of 10°-10° times.

By performing this procedure at different temperatures,
a profile of the system’s thermal behavior can be con-
structed.

IV. RESULTS

For each geometry, we randomly selected 400-800 values
for the nondimensionalized temperature between 7' = 0.0
and T'= 5.0 (T = 0.0 to T' = 8.0 for the random lattice).
At each temperature, we ran the Metropolis-Hastings al-
gorithm in the zero-field limit, with B = h = 0. We
computed the average magnetization of each run after it
had thermalized; the results are plotted in Figure 3.

For a system with N particles, Ny of which are spin-up
and N, = N — N; of which are spin-down, the magneti-
zation is defined as

M = % — &
N N
It ranges in value from —1 to +1 and provides a rough
picture of how well-aligned the overall system is. Above
the critical temperature, we expect to observe a magne-
tization close to zero. Below the critical temperature T,
the magnetization relaxes to M = +1, with the relax-
ation governed by a critical exponent 3:

|M] o< |T. = T (7)

Since we are working in the zero-field limit, neither the
spin-up nor the spin-down direction is preferred; the oc-
currence of one or the other is an example of spontaneous
symmetry breaking.

The key test of the Metropolis-Hastings algorithm is
its ability to successfully reproduce a ferromagnetic phase
transition at the Ising critical temperature, as well as the
proper critical exponents governing the system’s behavior
near that point. We performed a nonlinear fit to the data
to extract the parameters T, and [ for each lattice. Our
results are quoted in Figure 3 and Table IT; our method
for computing them is outlined below.

A. Critical curve-fitting

The critical temperature T, and critical exponent /3 were
computed by performing a nonlinear fit to the data of
the form

[M(T)| = AIT. - T7, (8)

where A is an additional undetermined constant. We
performed this fit using Mathematica’s FindFit[] com-
mand.

A brief examination of Figure 3 will reveal that the
data did not follow a clean power law, as might be ex-
pected from (8). Finite magnetization persisted above
the critical temperature in all four geometries, making
the plot look more like a logistic plot than a power law
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(d) Random 2D lattice

FIG. 3: Absolute magnetization as a function of temperature, with critical exponent fit, on (a) the hexagonal lattice, (b) the
square lattice, (¢) the triangular lattice, and (d) the random 2D lattice. Note the softer transition to the magnetized phase in

the random lattice.

distribution. This was likely due to the finite size of
the system—even above the critical temperature, corre-
lations across the scale of the system do not vanish, and
hence a finite magnetization may be thermally favorable.

Furthermore, many iterations of the model exhibited
low magnetizations even below the critical temperature.
This was due to our finite computational resources: at
low temperatures, it is possible for the Ising model to
become frozen into locally optimal energy configuration
that nonetheless has a low net magnetization, because
it lacks the thermal energy to escape this nonoptimal
configuration. In principle, given infinite time such a
system should eventually equilibriate to a high-M con-
figuration, but it would take prohibitively long to ac-
tually simulate this entire thermalization process. This
freezing-in is especially prevalent in the hexagonal lattice
(see Figure 3(a)), which has the lowest connectivity of the
three systems—with fewer links for fluctuations to move
through the system, it is more likely for a nonoptimal
configuration to become frozen in. In fact, at the very
lowest temperatures the hexagonal lattice never reached
the fully magnetized state.

The part which could be fitted well by (8) was the
upper edge of the magnetization distribution for T' <
T.. For each of the regular lattices in Figs. 3(a-c), this
edge curved smoothly away from the critical point in a

manner consistent with a power-law model. In order to
fit the model to this edge, we computed the convex hull of
the data in the (T, M) plane, extracting the outermost
points along the edge. We then fit the model to those
data points. For the random lattice, the upper edge was
somewhat less sharply defined, so we computed the fit
on a thin strip of data points near the outer edge. The
uncertainties were computed by incrementing the number
of points in the convex hull that were used to compute
the fit and examining how much the fitted parameters
changed under this perturbation.

V. DISCUSSION

Table II collects both the computed critical parameters
and the theoretical values for the exactly solvable lattices.
The critical temperatures for the exactly solvable systems
were discussed in Section II.A above. The measured crit-
ical temperatures are all somewhat higher than the the-
oretical values. This is likely due again to the finite size
of the system—as long as correlations on the scale of the
system do not completely vanish, an ordered state can
survive at a higher temperature than in an infinite sys-
tem. Notice also that the critical temperature increases
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Lattice z Te exact T, measured Bexact Bmeasured
Hexagonal lattice 3 1.519 1.678 £+ 0.002 0.125 0.129 £+ 0.009
Square lattice 4 2.269 2.409 £ 0.007 0.125 0.129 £ 0.008
Triangular lattice 6 3.641 3.782 £ 0.007 0.125 0.121 + 0.006
Random 2D lattice 6.64 5.01 £ 0.02 0.26 £ 0.02
Power-law random lattice 6.64 6.15

TABLE II: Theoretical and measured critical temperatures and critical exponents for hexagonal, square, triangular, and random
lattices. The measured critical exponents are in good agreement with theory, while the critical temperatures vary with the
number of nearest neighbors z, as is expected. The critical exponent for the random lattice is substantially larger than the

ones for the ordered lattices.

as the number of nearest neighbors increases. Unsur-
prisingly, then, the random 2D lattice, with (z) = 6.64,
had the highest measured critical temperature. It still fell
short of the prediction by Dorogovtsev et al. of T, = 6.15,
but as mentioned previously, this is not surprising.[7]

The critical exponent 8 is known to be exactly 1/8 for
all three regular planar lattices.[1] The computed values
for B for the hexagonal, square, and triangular lattices
are all consistent with this prediction, while the value for
the random 2D lattice is somewhat higher. This suggests
that it is harder for spin-spin correlations to carry infor-
mation over a random network, as the magnetization sets
in more slowly below the critical temperature.

In this paper, we have given an overview of the history
of the Ising model, described an implementation of the
model via the Metropolis-Hastings algorithm, and exam-
ined Metropolis-Hastings calculations on four different

geometries. We have found good agreement with the-
ory for the systems that are exactly solvable, and have
demonstrated plausible results for the non-exact system.

Acknowledgments

Prof. Mehran Kardar introduced the author to many of
the formal concepts presented in this paper, including
the theories of criticality and duality. Dr. John Dell
of the Thomas Jefferson High School for Science and
Technology provided the author’s original introduction to
the Ising model, the Metropolis-Hastings algorithm, and
computational implementations thereof. Andre Kessler
collaborated with the author on early versions of the code
later repurposed into this project.

[1] M. Kardar, Statistical Physics of Fields (Cambridge Uni-
versity Press, 2007).

[2] S. Bhattacharjee and A. Khare, Curr. Sci. 69, 816 (1995).

[3] L. Onsager, Phys. Rev. 65, 117 (1944).

[4] B. M. McCoy, in Encyclopedia of Mathematical Physics
(Oxford Academic Press, 2006), pp. 322-328.

[5] B. Liu and M. Gitterman, Am. J. Phys. 71 (2003).

[6] M. Glasser, Am. J. Phys. 38, 1033 (1970).

[7] S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes,
Phys. Rev. E 66, 016104/1 (2003).

[8] R. Glauber, J. Math. Phys. 4, 294 (1963).

[9] S. Caracciolo, R. G. Edwards, A. Pelissetto, and A. D.
Sokal, Nucl. Phys. 403, 475 (1992).

[10] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth,
A. H. Teller, and E. Teller, J. Chem. Phys. 21, 1087
(1953).

[11] M. de Berg, O. Cheong, M. van Kreveld, and M. Over-
mars, Computational Geometry: Algorithms and Appli-
cations (Springer, 2008).

[12] R. Gaylord and K. Nishidate, Mathematica in Education
3, 24 (1994).



